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Example references 
Following may be useful: 
1. Dorf RC & Bishop RH, Modern control systems, 12th ed, Prentice-Hall, 2011 
2. Paraskevopoulos PN, Modern control engineering, Marcel Dekker, 2001 
3. Franklin GF, Powell JD and Emami-Naeini A, Feedback Control of Dynamic 

Systems, 6th edition, Prentice-Hall, 2010. 
4. Nise NS, Control systems engineering, 4th edition, Wiley, 2004. 
5. Dutton K, Thompson S and Barraclough B, The Art of Control Engineering, 

Addison-Wesley, 1998. 
6. Franklin GF, Powell JD and Workman ML, Digital control of dynamic 

systems, 3rd edition, Addison-Wesley, 1997. 
7. Hines W, Matlab Supplement in Fuzzy and Neural approaches in 

Engineering, Wiley, 1997. 
8. Mathworks, Matlab, Simulink, Control Systems and System Identification 

Toolboxes, available on-line in pdf form, www.mathworks.com 
 
 
I would like to thank all the colleagues (too many to mention individually) 
across the world who have helped with the formulation of this lecture on 
Modelling and Control from material placed on the www 
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Control systems basics 
• What is Control Engineering? 

– Control is concerned with the area of designing and making systems 
behave in some defined/ specified manner 

• Control systems have inputs which “drive” outputs 
– Simple systems 

• Single input – single output, Linear  
– Complex systems:  

• Multivariable I/Ps – O/Ps 
• Non-linear, stochastic, etc 

• Input-output related by TF 
– y(t)=Gu(t) 

 
• System driven by u(t) & v(t) 
   u(t), v(t)  y(s) for s>t 
   causal system 

Input u(t) Output y(t) 
System 

Inputs Outputs 

u(t) y(t) System 

System 
G(s) 

Input u(t) Output y(t) 

Disturbance v(t) 
Can control 

Can’t control? 
Can’t measure? 



Problems in control 
   

U Y 
? 

Modelling or synthesis 

? Y 
G 

Controller design  
or measurement 

U ? 
G 

Simulation or analysis 

? Y 
G C R 
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Control system formats 
   

Open loop system (eg robot joint) 

Joint 
Input Output 

Control 
device 

Input desired 
output 

- 

Error 
System 

G(s) Actuator 

Sensor 

Actual 
output 

Feedback Measured output 

Closed loop system 



Open loop – closed loop 
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Open Loop Control System 
Y(s)=G(s)U(s) 

Simple but variable response 
Simple gain system example 

System 
G(s) 

Input, U Output 
Y 

System 
G(s) 

Ref Input U Output Y 
Closed loop control 
Y(s)=G(s)/(1+G(s)) 
 
Good behaviour but complex and leads to instability.  

- 
Measurement 

Comparison 

Why does instability arise? Why is behaviour good? 



Videos of control examples 
• Examples include 

– Herald of Free Enterprise, Estonia sinking (6 March 1987) 
– Tacoma Fall bridge collapsing (7 November 1940) 
– Hot metal rolling processes 
– Ocean Swell Powered Renewable Energy (OSPREY 1), 1995 
– Inverted pendulum control 
– Magnetic suspension 

• Important issues for good control are: 
– Need for good modelling 
– Over-engineering needed in practice 
– Feedback is good? 
– How to get good control performance 
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Movie 



Approaches in control systems 

• Main analysis and design methods include: 
– Open-loop versus closed loop 
– Time Domain and Frequency Domain methods 
– Traditional analysis/design methods: Bode, Nyquist, 

Routh, Root locus, PID 
– Modern methods: State space, adaptive control, 

multivariable control, model-based control 
– Heuristic methods: Fuzzy logic, neural networks 

• Continuous and Digital Control systems: 
Laplace versus z-transfer function  
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Laplace- and z-Transforms 
• The solutions of linear homogeneous ODEs is complicated and 

involve handling exponentials 
• Continuous systems:  

– The Laplace transform operation reduces exponentials to simple 
algebraic expressions 

– The Laplace transform can be used to convert a differential equation into 
an algebraic equation 

– The solution of the algebraic equation can then be written as the sum of 
terms, each of which is the Laplace transform of an exponential 

– Inverse Laplace transformation needed to convert back to original 
domain 

• Discrete systems: 
– The z-transform reduces difference equations into algebraic equations 

and also easy solution via following similar process with Laplace 
transforms for differential equations 
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Laplace example 
• Find the Laplace transform of 

 
 

• Solution is  
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Matrix algebra 
• To be used when scalar variables become 

vector variables 
• Column and row vectors 

 
 
 

• Matrices are collection of row/column vectors 
• Dimensions of vectors/ matrices must be equal 

for matrix operations (eg. multiplication) to be 
valid (AB ≠ BA). 

• Square and non-square matrices 
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Matrix definitions 
• A diagonal matrix is a square matrix whose element 

are all zero except those on the main diagonal 
• Transposing a matrix converts the rows into columns 

and vice versa. The transpose of a matrix=(A)T=AT 

• A symmetric matrix has its elements that are mirror 
image along the diagonal. The transpose of a 
symmetric matrix is the same, i.e., AT=A 

• If the determinant of  a square matrix is zero, the 
matrix is called singular. If the determinant is nonzero, 
the matrix is called non-singular 
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Matrix operations 
• Matrices can be added, multiplied, etc and have 

various mathematical operations carried out 
• Determinant of a matrix can be calculated using                          

cij are the elements of the conjugate matrix 
• The inverse of a matrix A is denoted A-1 and has 

the property A*A-1=I (Identity) 
• Eigenvalues and eigenvectors, etc 

∑
=

=
n

1i
ijijcaA

rseigenvectogivemAmandseigenvaluegiveAI iii λλ ==− 0
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Digital control systems 
• Digital controllers! What is digital control? 

– Digital control is concerned with the area of control systems which are 
implemented using digital techniques/ computers 

• What is needed? 
– Hardware – to transform from the real (“analogue”) world to the computer 

(“digital”) world and vice versa 
– Hardware – to do the thinking in the digital world. This is the processing 

hardware. 
– Software – The instructions to be carried out. These are the algorithms 

run on the computing hardware. 
• In digital control systems we need to consider sampled and 

quantised signals as well as having to use z transforms to make 
the mathematics easier, etc. 
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Numerical example 
• Determine the output response of the second 

order system shown below when a unit step is 
applied 
 

U(s) Y(s) 
( )2

8
6 8s s+ +

Two 1st order subsystems   via “Cover up” rule 

0 0.5 1 1.5 2 2.5 3
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0

0.5

1

1.5
Unit step response

 

 

Step
exp(-4t)
-2exp(-2t)
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Standard second order systems 

• Most systems can be studied as a set of first 
order sub-systems or a standard second order 
system (dominant behaviour) 

• Transfer function of a standard second order 
system is 
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Time domain analysis 
• Study system responses to 

standard inputs, eg. step, 
impulse, ramp, etc. 

• Behaviour is characterised 
by overshoot, damping 
ratio, settling time, rise 
time, etc 

• Responses based on 1st 
order system response or,  

• Based on 2nd order system 
responses, dominant 
roots, etc 
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Stability in the s-Plane 
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Frequency domain analysis 

• Study system’s steady 
state responses to 
sinusoidal inputs 

• Behaviour is characterised 
by gain margin, phase 
margin, bandwidth, type 
number, etc 

• Use Laplace transfer 
function and replace s by 
jω.   

• Bode, Nyquist, Polar 
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Root locus analysis 
• Study variations of pole 

locations of characteristic 
equation as K: 0 → ∞ 

• Simple rules for drawing 
root locus in s-plane 

– Locus starts at open loop (OL) 
poles 

– End at OL zeros (finite and 
infinite) 

– Standard patterns for no of 
infinite zeros 

• Same rules for drawing root 
locus in z-plane but pole 
locations have different 
meaning 
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2 infinite zeros 
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3 infinite zeros 



Transfer functions OL & CL 
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Open Loop Transfer function 
System 

G(s) 
Input, U Output, Y ( ) ( ) ( )sUsGsY =

System 
G(s) 

Input U Output Y 

- 
Measurement 

Error E 

Closed Loop Transfer function: Unity feedback 
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Controller design general aims 

• Stability 
• Low steady state errors 
• Good transient response in time domain 

– Fast behaviour 
– Fast settling time 
– Low overshoot – damping ratio, ζ ~ 0.5-0.7 

• Design in frequency domain 
– Phase margin~50º 
– Gain margin~9dB 

• Noise ignored 
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Controller design methods 
• Root locus – pole and zeros in s-plane adjusted 

for desired steady state error and transient 
response 

• Frequency domain – Bode, Nyquist – phase 
margin related to overshoot, bandwidth to 
damping ratio and settling or peak time 

• Pole placement via State feedback 
• PID (P,I,D, PI,PD) controllers 
• Lead, lag and lead-lag controllers 
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System considered 
• Open-loop Continuous TF: 

 
 

• Closed-loop Continuous TF 
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Uncompensated system response 

• System speed is low (settling time >60sec) 
• Damping is low (large overshoot ≈60%) 
• Will illustrate various controller design approaches 

using continuous and discrete control systems 25 

Open-loop 
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1. Simple design 
Cancel slow pole in OLTF and add a faster pole.  
Can use file GSVDesign1.m to help with design. 
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1. Simple design’s performance 

• Discretisation (with T=1sec) introduces de-stabilising effect that 
needs to be allowed for in continuous design 

• Need for appropriate safety margin in the continuous design 
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Continuous step response 
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2. Design via Root Locus 
• Design continuous controller C(s) via Root Locus 

 
 

• Original root locus 
– RL starts at OL poles 
– RL ends at OL zeros 
– System has 

• 2 slow poles 
• 2 infinite zeros 
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to make the controller proper 



2. Design via RL (2) 
• Use Matlab file GSVDesign2.m to assist  design 
• Try zero at -4 and a pole at -20 

 
 

• Gives Root Locus 
• Find gain at  
 “best location” 
 on RL =1830 
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2. Design via RL (3) 
• Enter gain=1830 into DesignGSV2.m file & RUN 
• Note: System has been speeded up 
• T needs reducing 

– T=0.05sec 
• Controller is 
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3. PID controller design 
• PID controllers are the most widely used control strategy in 

industry. It consists of three different elements: 
– Proportional control: pure gain adjustment on the error signal to provide 

the driving input to the system, it is used to adjust the speed of the 
system; improves transient response, reduces steady-state error, may 
reduce stability 

– Integral control: implemented by including an integrator to provide the 
required accuracy for the control system; increases system type by 1, 
infinity steady-state gain which eliminates steady-state error for a unit 
step input. Need to avoid integral windup by switching integrator off 
when control has saturated 

– Derivative control: here derivative action is used to increase the damping 
in the system. The derivative term also amplifies the existing noise which 
can cause problems including instability 

• Can be used as P, PI, PD and PID forms 
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3. PID controller design (2) 
• PID block diagram: 
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where 
KP is the proportional gain 
TI is the integral time constant 
TD is the derivative time constant 

KP, TI, TD need to be tuned for 
tuning the PID controller 



3. PID controller design (3) 
• Ziegler Nichols closed-loop tuning method: 

– Select proportional control only 
– Increase the value of KP until point of instability is reached (sustained 

oscillations), the critical value of gain KC, is reached 
– Measure the period of oscillation to obtain the critical time constant TC 

• Once KC and TC obtained, the PID parameters can be calculated 
from the following table: 
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Control KP TI TD

P only 0.5KC

PI 0.45KC 0.833TC

PID tight control 0.6KC 0.5TC 0.125TC

PID some overshoot 0.33KC 0.5TC 0.33TC

PID no overshoot 0.2KC 0.3TC 0.5TC

These values are not optimal and some additional tuning may be needed.   



3. PID controller design (4) 

Closed-loop method cannot be applied in some cases. 
Can also use Ziegler-Nichols reaction curve method: 
• With system in open loop, take it manually to the 

normal operating point and let the output settle at 
y(t)=y0 for a constant input u(t)=u0 

• At initial time t0, apply a step change to the input from 
u0 to u1 (≈ 10-20% of full scale) 

• Record the system output until it settles to the new 
operating point. Assume you obtain the curve shown 
on the next slide. This curve is the process reaction 
curve 
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3. PID controller design (5) 

Process reaction curve 
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Control KP TI TD 
P only 1/RL 
PI 0.9/RL 0.27/RL2 

PID 1.2/RL 0.6/RL2 0.6/R 

Use values from reaction 
curve to tune PID 
controller parameters 

Other tuning 
methods also 
available 



System identification 
Typical setup 

Input 
u(t) Output y(t) System 

System is driven by input u(t) and disturbances v(t) 

Disturbances v(t) Assume SISO for 
convenience, similarly for 
MIMO 

Can control Can’t control (?) 
Can’t measure (?) 

u(t), v(t) → effects y(s) for s>t; causal system  



Identification procedure 
1. Design experiment 
2. Perform design 

experiment to collect 
data 

3. Choose/ determine 
model structure 

4. Determine model 
parameters (batch form 
and on-line) 

5. Validate model 
6. Good? 

– Yes – Stop 
– No – Repeat 
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Plant
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Many types of models 
exist; we will focus on 
discrete time invariant 
linear systems 



Direct calculation: Example 1 
• Step response data 

 
 

• The plant model is assumed to be of the form 
 

 
• This gives a difference equation 
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Direct calculation: Example 1 (Cont) 

• At t=1, apply unit step; 

• At t=2,      (1) 

• At t=3,      (2) 

• From (1):  

• From (2): 

 

• Plant model is:  

t 0 1 2 3 4 5 
ut 0 1 1 1 1 1 
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Direct calculation: General 
• Substituting input (u) and output values for n+m 

different values of t gives n+m equations. Hence can 
solve for the n+m unknowns 
 
 
 
 
 
 

• where d=n+m 
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Direct calculation: General (Cont 1) 

Write in matrix form 
where 

 
 
 
 
 
 

Hence we have:  
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Direct calculation: Drawbacks 
• Data is normally corrupted by noise (sensor, 

system, measurement, etc). Hence plant 
parameters are not accurate 

• Method relies on input being "persistently 
exciting" to ensure data contains the full 
dynamics of the system. When plant input is 
constant (eg step input), data is not usually 
good enough for system identification 

• Need for much greater set of data so that 
– Effects of noise can be averaged (properties of 

noise is also important) 
– There is enough system dynamics information to 

capture all that is needed for the required accuracy 
– Parameter estimation via Least squares 

 



Least squares estimation 
• Consider 

 
 

• Assume input is zero for t<0 and start up values 
are known for the output 
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Least squares (Cont) 

• Hence we have system is governed by 
 
 

• Assume we have a model   where is 
the vector of system parameters and is the 
modelling error 

• What should  be to minimise  ? 
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Least Squares (Cont 2) 
• The least squares estimate chooses the set of parameters 

which minimises a cost function 
 

 
 
• Hence for a minimum J wrt  

 
 
 
 
 

• Basic equation upon which (BATCH form of) least squares 
algorithms are based 
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Motion control of a single joint 

• In many industrial 
manipulators, each joint 
is driven using a 
separate, independent 
control system. For 
example, consider joint 1 
of a Puma 560 
manipulator, which is 
driven by a DC 
servomotor through a 
gear train 
 46 

Puma 560 Joint 
1 drive system 



Motion control: Analysis of drive system 

The joint torque τ will accelerate the joint and the manipulator 
above it; these have inertia J (second order system):                   (1) 
Torque delivered by the motor τm is used to provide the joint 
torque, to overcome any unmeasured disturbance torque τd (which 
could include friction) and to accelerate the motor itself: 
        (2) 
where G is the gear ratio (motor speed over joint speed) substituting 
equation (1) into equation (2): 
 
        (3) 
Motor torque is proportional to current. If a current amplifier is used, 
then the current is in turn proportional to the current signal u. Thus if Km 
is a constant:       (4)  
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Proportional control of a single joint 
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PD control of a single joint 
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Summary 
• Overview of modelling and control in general systems 

engineering applications 
• Introduction to controller design via several methods 
• Examples described 
 
 
 
 
 
Thanks are expressed to all the colleagues (too many to mention 
individually) across the world who have helped with the 
formulation of this lecture on Modelling and Control from material 
placed on the www 
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